An image of the same woman at two different ages, representing the potential effects of mTOR and rapamycin on aging and longevity.

Disclaimer: This article is for informational purposes only and is not intended to diagnose any conditions. LifeDNA does not provide diagnostic services for any conditions mentioned in this or any other article.

Aging of world populations is happening faster than ever. In 2020, there were more people over 60 than children under five. By 2050, nearly one in five people will be over 60. According to WHO by 2050, the world will have twice as many people over 60, totaling 2.1 billion. The 80+ age group will also see rapid growth, tripling to 426 million.

 

As the global population ages, scientists are exploring ways to slow down aging at the cellular level. Some believe that mTOR inhibition might be a promising solution, but could a drug like Rapamycin truly have an impact on how we age? Can we slow down aging? 

What is Aging?

Aging is a natural process that happens as our bodies slowly wear down over time. Small changes build up inside our cells, making it harder for them to work properly. This leads to a gradual loss of strength, a decline in cognitive and memory function, and other aging-related concerns that could affect overall health. As people age, they become more prone to develop health issues like hearing loss, arthritis, and other diseases. Some may also experience difficulty  managing their normal daily activities.

However, aging doesn’t happen the same way for everyone. While genes may play a role, our lifestyle and environment have a significant impact. Eating well, staying active, and having strong social connections may help people stay healthier and live for a longer time.

You may also want to read: The Genetic Aspects of Brain Aging

What is mTOR? 

mTOR is a special protein inside our cells that acts as a control center for growth, energy use, and survival. It helps cells decide when to grow, divide, and repair themselves. When nutrients and energy are available, mTOR becomes more active and aids in promoting cell growth and protein production. When resources are limited, it slows down its activity to allow cells to focus on maintenance and repair instead. This balance is important for overall health, as too much mTOR activity may contribute to aging and disease, while controlled inhibition may support longevity and better cellular function.

Scientists have found that mTOR plays a significant role in aging and disease risks. When it’s too active, it can speed up aging and may even help cancer cells grow. However, when mTOR is carefully controlled, it may help cells stay healthy for longer.

What is Rapamycin?

Rapamycin, also called sirolimus, is a compound that was first discovered in bacteria found on Easter Island. Today,  it is mainly used as a drug to support  transplantations , but its potential for longevity is also a current area of research. Scientists realized that it had powerful effects on the immune system, so it is used to help people who have had organ transplants. It works by calming down the body’s immune defense system so it doesn’t attack the new organ.

Later, researchers found that Rapamycin also affects a key protein inside our cells called mTOR, which controls growth, repair, and aging. When mTOR is too active, it can speed up aging and even promote the growth of cancer cells. Rapamycin slows down mTOR activity, which helps cells focus on repairing themselves instead of constantly growing.

Because of this, scientists believe that the use of Rapamycin may help support longevity – and helpg people  stay healthy and by reducing the risk of developing age-related diseases. It is still being studied, but it has already been shown to extend lifespan in animals. Some researchers think it could one day be used to slow aging in humans too.

Studies on Rapamycin

A study by Neff, Ehninger, and colleagues suggests that rapamycin extends lifespan but has limited effects on aging. However, a deeper analysis of their findings shows that rapamycin does, in fact, slow aging while also increasing lifespan. Aging is defined in the study as not just an accumulation of damage but a process driven by the mTOR pathway, or a continuation of normal growth processes that eventually become harmful.

The study highlights that rapamycin affects the same biological processes in both young and old animals, supporting the idea that aging is a continuation of normal functions rather than a distinct programmed event. By inhibiting mTOR, rapamycin reduces the hyperfunctional states of cells and tissues that contribute to age-related diseases such as cardiovascular issues, diabetes, and neurodegeneration. While it is well known that rapamycin has anti-cancer properties, this study shows that its ability to extend lifespan is not solely due to cancer prevention. Even when rapamycin was administered later in life, it still increased longevity, suggesting that it mitigates aging at a deep level.

The paper also suggests that many age-related diseases, including cancer, are biomarkers of aging rather than separate conditions. Since rapamycin delays these diseases by targeting the aging process itself, its longevity benefits go beyond just preventing cancer.  It supports the broader idea that inhibition of mTOR slows aging, as seen across various species, from yeast to mammals.

Another study looked at how rapamycin affects both lifespan and health in mice. While rapamycin is well-known for helping animals live longer, its effects on overall health or healthspan are less clear.

To learn more, researchers gave rapamycin to male and female mice starting at 4 months old and continued treatment throughout their lives. From the age of 16 months onward, they repeatedly tested different health markers until the mice died.

The results showed that rapamycin improved some aspects of health, such as better grip strength in females, healthier body weight in females, and improved sleep in both males and females. However, it had no effect on some health measures and even worsened one cognitive aspect, as male mice performed worse on a balance and coordination test.

The effects of rapamycin were different between male and female mice. In several areas like body weight, fat percentage, and metabolism, males and females responded in opposite ways. This was a new finding, as past studies have shown that rapamycin affects males and females differently, but not that it pushes them in opposite directions. The study confirms that while rapamycin may influence health, its effects may depend on gender. Overall, some health aspects improved, some stayed the same, and some got worse, showing that rapamycin’s benefits may not be equal for everyone.

How Could Blocking mTOR Help Us Live Longer?

Scientists have found that turning down mTOR can slow aging and help us live longer. Here’s how:

  • Stops cells from aging too fast – Our cells may get stuck in an old, worn-out state. This makes our bodies weaker over time. Rapamycin helps slow this down, by promoting cellular repair to help the cells work better. 
  • Works in many living things – Scientists have studied the  mTOR blockage in tiny organisms like yeast, worms, and flies. They all lived longer. Even mammals like mice had longer lives when mTOR was slowed down.
  • Rapamycin helps every animal tested so far to live longer – Every species given Rapamycin so far has lived longer, which suggests that this could be applicable for humans too.
  • Eating less also slows aging – Scientists already knew that eating fewer calories helps animals live longer. One reason? This lowers mTOR activity, just like Rapamycin does.
  • Might help prevent age-related diseases – As we get older, we’re more likely to get sick with things like heart disease or get memory problems. Too much mTOR may play a part in this. In animal studies, Rapamycin helped lower the risk of these disorders.

How Is Rapamycin Used Today?

Rapamycin is mainly used to help people who get organ transplants. It weakens the immune system so the body doesn’t reject the new organ. It is also used to treat a rare lung disease called lymphangioleiomyomatosis (LAM), which may damage the lungs and cause breathing difficulty. 

What Are the Risks and Side Effects of Rapamycin?

Like any medication, Rapamycin may cause side effects. Some are mild, while others can be serious.
Here are some possible effects:

  • Weaker Immune System – You may get sick more easily or take longer to heal from injuries.
  • Higher Cholesterol and Blood Pressure – It can raise cholesterol and blood pressure levels, which may increase heart risks.
  • Blood Sugar Changes – It might raise blood sugar, which should be avoided by people with diabetes.
  • Skin Issues – Some people may get acne, rashes, or bruises more easily.
  • Stomach Problems – You may feel nauseous or have stomach pain.
  • Sun Sensitivity – Your skin may burn more easily in the sun.
  • Cancer Risk – Since it weakens the immune system, some studies suggest it might slightly increase the risk of certain cancers.

It is important to note that physicians  recommend regular checkups and blood tests while taking Rapamycin to watch for any problems. It is also important to avoid certain other medications, as they can change how the drug works in your body. So it is highly advisable to have your physician’s supervision before taking any medicine or supplement especially if you have other health issues.

References

Â